218k views
1 vote
Find the distance, c, between (–3, –1) and (3, 2) on the coordinate plane. Round to the nearest tenth if necessary ??

2 Answers

10 votes

Point distance formula:

d=√((x_2-x_1)²+(y_2-y_1)²)

Substitute

d=√((3-(-3))²+(2-(-1)²)

Simplify

d=√((6)²+(3)²)

d=√(36+9)

d=√(45)

d=3√(5)

-Hunter

User Topxebec
by
4.6k points
8 votes

Given :-

  • (x 1 , y1) = (-3 , -1)

  • (x2 , y2) = (3 , 2)


\\ \\

To find:

  • Distance between two points

We know :-


\bigstar \boxed{ \rm d = \sqrt{(y_2 - y_1 {)}^(2) + (x_2 - x_1 {)}^(2) } }

So:-


\dashrightarrow \sf d = \sqrt{(y_2 - y_1 {)}^(2) + (x_2 - x_1 {)}^(2) } \\


\\ \\


\dashrightarrow \sf d = \sqrt{(2 - ( - 1) {)}^(2) + (3 - ( - 3) {)}^(2) } \\


\\ \\


\dashrightarrow \sf d = \sqrt{(2 + 1 {)}^(2) + (3 + 3{)}^(2) } \\


\\ \\


\dashrightarrow \sf d = \sqrt{(3 {)}^(2) + (3 + 3{)}^(2) } \\


\\ \\


\dashrightarrow \sf d = \sqrt{(3 {)}^(2) + (6{)}^(2) } \\


\\ \\


\dashrightarrow \sf d = \sqrt{9 + (6{)}^(2) } \\


\\ \\


\dashrightarrow \sf d = √(9 +36 ) \\


\\ \\


\dashrightarrow \sf d = √(45) \\


\\ \\


\dashrightarrow \sf d = √(3 * 3 * 5) \\


\\ \\


\dashrightarrow \sf d =3 √(5)


\\ \\


\dashrightarrow \sf d =3 * 2.23


\\ \\


\dashrightarrow \bf d =6.70


\\ \\


\therefore \underline{ \textsf{ \textbf{distance \: between \: two \: points \: is \: equal \: to \red{6.70 \{approx\}}}}}

User Sergey Ronin
by
3.9k points