22.7k views
5 votes
the points (7, 18) and (3, 14) fall on a particular line. What is its equation in slope-intercept form?

User DavSanchez
by
4.0k points

1 Answer

3 votes


(\stackrel{x_1}{7}~,~\stackrel{y_1}{18})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{14}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{14}-\stackrel{y1}{18}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{7}}} \implies \cfrac{ -4 }{ -4 } \implies 1


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{18}=\stackrel{m}{ 1}(x-\stackrel{x_1}{7}) \\\\\\ y-18=x-7\implies {\Large \begin{array}{llll} y=x+11 \end{array}}

User Theo Sweeny
by
3.3k points