92.8k views
1 vote

√(3^2+27)+2^3+\sqrt[3]{64}

User Schmidlop
by
8.4k points

2 Answers

4 votes


\boldsymbol{\sf{√(3^2+27)+2^3+\sqrt[3]{64} }}

Calculate 3 to the power of 2.


\boldsymbol{\sf{√(9+27)+2^3+\sqrt[3]{64} }}

Add 9 and 27.


\boldsymbol{\sf{√(36)+2^3+\sqrt[3]{64} }}

Find the square root of 36.


\boldsymbol{\sf{6+2^3+\sqrt[3]{64} }}

Calculate 2 to the power of 3.


\boldsymbol{\sf{6+8+\sqrt[3]{64} }}

Add 6 and 8.


\boldsymbol{\sf{14+\sqrt[3]{64} }}

Calculate
\sqrt[3]{64}


\boldsymbol{\sf{14+4=18}}

User Ami
by
7.5k points
2 votes

Answer:


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{ 18}

Step by step explanation:


\: \: \: \: \: \: \: \bold{√(9 + 27) + 2 {}^(3) + \sqrt[3]{64} }

To solve this problem, the first thing we have to do is simplify 3² to 9, since it multiplies 2 times 3 to give us 9.


\: \: \: \: \: \: \: \: \: \: \: \: \bold{ √(36) + {2}^(3) + \sqrt[3]{64} }

Then we must add 9 + 27 to give us a result of 36.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + {2}^(3) + \sqrt[3]{64} }

Now we must multiply again but this time we are going to multiply 2 times 6 since 6 × 6 is equal to 36.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + 8 \: + \sqrt[3]{64} }

Now we must again multiply 3 times 2 to give us 8.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + 8 + 4}

Then we must add 6 + 8 + 4.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{14 + 4}

Before finishing we know that we got 14, now we must add 14 + 4 to give us a result of 18.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{18}

Rpt: The result is 18.

User HedgeHog
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories