Answer:
![x=(\pi )/(3)+2\pi n, \quad x=(5\pi )/(3)+2\pi n,\quad x=2\pi n,\quad x=\pi+2\pi n](https://img.qammunity.org/2023/formulas/mathematics/high-school/mnc2n0478sog2va93rlagk4rfq92gsqn7b.png)
Explanation:
![\boxed{\begin{minipage}{6.5 cm}\underline{Trigonometric Double Angle Identities}\\\\$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$\\\\$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$\\\\$\tan (A \pm B)=(\tan A \pm \tan B)/(1 \mp \tan A \tan B)$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1arcadowpcmnfm9jjrn3mzyufij59240u.png)
Given equation:
![\tan (x + \pi) + \sin(x + \pi) + \sin(x - \pi)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/lo4xlmf0vm7t64gcsmn4b0wotymbzzl1ur.png)
Simplify using the double angle identities:
![\implies (\tan x + \tan \pi)/(1 -\tan x \tan \pi) + \sin x \cos \pi+\cos x \sin \pi + \sin x \cos \pi -\cos x \sin \pi=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/x782540gjv42j2xoxxch8awv6voub610z3.png)
![\implies (\tan x + 0)/(1 -\tan x(0)) + \sin x (-1)+\cos x (0) + \sin x(-1) -\cos x (0)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/3l0tcofiugr38lkvcnzfe3q9r76ysxxhl8.png)
![\implies (\tan x)/(1) -\sin x - \sin x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/el6vl3tkzygmsg63nv9fe6ublej327f5gd.png)
![\implies \tan x-2\sin x =0](https://img.qammunity.org/2023/formulas/mathematics/high-school/xmy7abvh6lf81d25hrcsgeyich8tutnm6j.png)
Use the tan identity to rewrite tan(x) in terms of sin(x) and cos(x):
![\implies (\sin x)/( \cos x)-2\sin x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/fyjfxhfsvgkeb8hyrm38gf1gu1izjhg02v.png)
Multiply both sides by cos(x):
![\implies (\sin x\cos x)/( \cos x)-2\sin x\cos x=0(\cos x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sehy925g29yvpwyl7f1j1tz6km1togvr0h.png)
![\implies \sin x-2\sin x \cos x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/o35npcyaphvid15fh9jx8lk201wr4w1qi3.png)
Factor out sin(x) from the left side of the equation:
![\implies \sin x(1-2 \cos x)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/fhr7f9q2upejcdj7imoljru6duzw6vre5y.png)
Apply the zero-product property.
Case 1
![\implies \sin x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/zwyyi8temb36l4hb701kmyjevuph5nwvpa.png)
![\implies x=\sin^(-1)(0)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hnra2jnsmgzvtvzlviss4654owzh7or4fq.png)
![\implies x=2\pi n, \; \pi+2\pi n](https://img.qammunity.org/2023/formulas/mathematics/high-school/m6248t7stjhp2iiywmwtai17ps3amvnykf.png)
Case 2
![\implies 1-2 \cos x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/j31oxa407qtstir614w0m8djc505iabaif.png)
![\implies 1=2 \cos x](https://img.qammunity.org/2023/formulas/mathematics/high-school/y1zzkbdde62zklqtlyakztl5b9qzzl181u.png)
![\implies \cos x=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/emv85me5ziuxjo5lwn9yyqyhkizufe5n0p.png)
![\implies x= \cos ^(-1) \left((1)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fh0w28sifo4i0j6ltcfzy1po4704e8hjiv.png)
![\implies x=(\pi )/(3)+2\pi n, \;(5\pi )/(3)+2\pi n](https://img.qammunity.org/2023/formulas/mathematics/high-school/b94q7nh204vkrb4ikbmw9jcc9a2r2590j4.png)
Solution
![x=(\pi )/(3)+2\pi n, \quad x=(5\pi )/(3)+2\pi n,\quad x=2\pi n,\quad x=\pi+2\pi n](https://img.qammunity.org/2023/formulas/mathematics/high-school/mnc2n0478sog2va93rlagk4rfq92gsqn7b.png)