Before we start let's remember two important properties of integrals
![\begin{gathered} \int (f(x)\pm g(x))_{}dx=\int f(x)dx\pm\int g(x)dx \\ \\ \int c\cdot f(x)dx=c\cdot\int f(x)dx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cpr5ym2mtpv9qd8myxgvne1i951s8fwbez.png)
Using that, we can rewrite
![\int ^2_(-2)(7x^2-28)dx](https://img.qammunity.org/2023/formulas/mathematics/college/wab36w1m3jyli5jamq0oh1zoq40y1j728r.png)
as
![7\int ^2_(-2)x^2dx-28\cdot\int ^2_(-2)dx](https://img.qammunity.org/2023/formulas/mathematics/college/20zil9n8sstwkf8vu1ecftja2jl6rv37wi.png)
The integral of a monomial is
![\int x^ndx=(x^(n+1))/(n+1),n\\e-1](https://img.qammunity.org/2023/formulas/mathematics/college/bdmpwau5ag2464wt21a840r61zifk2msi1.png)
Using it let's integrate the two monomials
![F(x)=\int (7x^2-28)dx=(7x^3)/(3)-28x+C](https://img.qammunity.org/2023/formulas/mathematics/college/1p06hz2fax8346a39z0db1nw9mmn8rfjoa.png)
Using that and the Fundamental Theorem of Calculus:
![\int ^b_af(x)dx=F(b)-F(a)](https://img.qammunity.org/2023/formulas/mathematics/college/mbg03q1jd8k1875btbdtx1okr1dxzmbxmi.png)
We just gotta evaluate F(x) at 2 and -2.
![\begin{gathered} \int ^2_(-2)(7x^2-28)dx=F(2)-F(-2) \\ \\ \int ^2_(-2)(7x^2-28)dx=((7\cdot2^3)/(3)-28\cdot2)-((7\cdot(-2)^3)/(3)-28\cdot(-2)_{}) \\ \\ \int ^2_(-2)(7x^2-28)dx=-(56)/(3)-56 \\ \\ \int ^2_(-2)(7x^2-28)dx=-56(1+(1)/(3)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rl1aknmz2bgef0arhccxu0rjj90gir8c84.png)
Therefore, the final result is
![\int ^2_(-2)(7x^2-28)dx=-56(1+(1)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/mr0maetumpd9003908aaglwlhxt4gusi0t.png)
That's the signed area.