128k views
2 votes
If a+b+c = 9 and ab+bc+ca = 40, find a^2 + b^2 + c^2

If a+b+c = 9 and ab+bc+ca = 40, find a^2 + b^2 + c^2-example-1
User Shirvonne
by
7.8k points

1 Answer

5 votes


a^2+b^2+c^2=1

Step-by-step explanation

By definition.


\begin{gathered} (a+b+c)^2=a^2+b^2+c^2+2((ab)+(bc)+(ac)) \\ \end{gathered}

so

Let


\begin{gathered} (a+b+c)=9 \\ ab+bc+ac=40 \\ \text{now, replace} \end{gathered}


\begin{gathered} (a+b+c)^2=a^2+b^2+c^2+2((ab)+(bc)+(ac)) \\ 9^2=a^2+b^2+c^2+2(40) \\ 81=a^2+b^2+c^2+80 \\ \text{subtract 80 in both sides} \\ 81-80=a^2+b^2+c^2+80-80 \\ 1=a^2+b^2+c^2 \end{gathered}

hence


a^2+b^2+c^2=1

I hope this helps you

User David Wolf
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.