128k views
2 votes
If a+b+c = 9 and ab+bc+ca = 40, find a^2 + b^2 + c^2

If a+b+c = 9 and ab+bc+ca = 40, find a^2 + b^2 + c^2-example-1
User Shirvonne
by
3.2k points

1 Answer

5 votes


a^2+b^2+c^2=1

Step-by-step explanation

By definition.


\begin{gathered} (a+b+c)^2=a^2+b^2+c^2+2((ab)+(bc)+(ac)) \\ \end{gathered}

so

Let


\begin{gathered} (a+b+c)=9 \\ ab+bc+ac=40 \\ \text{now, replace} \end{gathered}


\begin{gathered} (a+b+c)^2=a^2+b^2+c^2+2((ab)+(bc)+(ac)) \\ 9^2=a^2+b^2+c^2+2(40) \\ 81=a^2+b^2+c^2+80 \\ \text{subtract 80 in both sides} \\ 81-80=a^2+b^2+c^2+80-80 \\ 1=a^2+b^2+c^2 \end{gathered}

hence


a^2+b^2+c^2=1

I hope this helps you

User David Wolf
by
3.4k points