Write out the general formula for finding the volume of a cone and a cylinder
![\begin{gathered} V_{\text{cone}}=(1)/(3)\pi r^2h \\ V_{\text{cylinder}}=\pi r^2h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6wcrapnaaag4o84e756zrg4mf3hx9rujc3.png)
Write out the given parameter in the question
![\begin{gathered} r_{\text{cone}}=1\text{ofeet} \\ h_{\text{cone}}=10\text{feet} \\ r_{\text{cylinder}}=10\text{feet} \\ h_{\text{cylinder}}=30\text{feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7hovsul98kmhxz65nsqpwd65hgu5tsteoe.png)
Substitute the given into the formula
![V_{\text{cone}}=(1)/(3)\pi r^2h=(1)/(3)*3.14*10^2*10=1046.67ft^3](https://img.qammunity.org/2023/formulas/mathematics/college/fx09mywoph3t97vy50tcqk8zqzjsutrhs2.png)
![V_{\text{cylinder}}=\pi r^2h=3.14*10^2*30=9420ft^3](https://img.qammunity.org/2023/formulas/mathematics/college/9j87q66exin95g4p6yrxu2sn775tf60po2.png)
The volume of the silo is the addition of the volume of the cone and the volume of the cylinder
![V_{\text{silo}}=1046.67ft^3+9420ft^3=10466.67ft^3(\text{nearest hundredth)}](https://img.qammunity.org/2023/formulas/mathematics/college/3ras10yc6vfo2zuvqvu3ob1cwiganr284m.png)
Hence, the volume of the silo is 10466.67ft³