232k views
3 votes
Let g(x)=log_2x1. find g(5)2. find g(-3)3. find g^-1(x)4. find g^-1(-3)

Let g(x)=log_2x1. find g(5)2. find g(-3)3. find g^-1(x)4. find g^-1(-3)-example-1
User Vaj Oja
by
8.4k points

1 Answer

2 votes

g(x)=\log _2x

You evaluate the equation in the given values of x:


\log _ba=(\log a)/(\log b)

1. g(5)
\begin{gathered} g(5)=\log _25 \\ g(5)=(\log 5)/(\log 2)=2.321 \end{gathered}
g(5)=2.3212. g(-3)
\begin{gathered} g(-3)=\log _2(-3) \\ g(-3)=(\log (-3))/(\log 2)=\text{undefined} \end{gathered}

The logarithm of a negative number is undefined

3. g^-1(x)

To find the inverse function you:

-write the function with x and y:


\begin{gathered} g(x)=\log _2x \\ y=\log _2x \end{gathered}

-Solve variable x:

knowing that:


\begin{gathered} \log _ba=c \\ b^c=a \end{gathered}
\begin{gathered} y=\log _2x \\ \\ 2^y=x \end{gathered}

- Change the x for (g^-1(x)) and the y for x:


g^(-1)(x)=2^x4.g^-1(-3)​

As:


n^(-m)=(1)/(n^m)


\begin{gathered} g^(-1)(-3)=2^(-3) \\ \\ =(1)/(2^3)=(1)/(8) \end{gathered}

User RedPanda
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories