![g(x)=\log _2x](https://img.qammunity.org/2023/formulas/mathematics/college/klfdc1clik1tvgwuljoz5qmuipkw6w16v3.png)
You evaluate the equation in the given values of x:
![\log _ba=(\log a)/(\log b)](https://img.qammunity.org/2023/formulas/mathematics/college/6vpagrbnp3472t2rqcamfbif8xlmp7k5dn.png)
1. g(5)
![\begin{gathered} g(5)=\log _25 \\ g(5)=(\log 5)/(\log 2)=2.321 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/owyejwmejuz9e2inpouvtnoldzs8m6zatf.png)
![g(5)=2.321](https://img.qammunity.org/2023/formulas/mathematics/college/34sfjhe5uy5zzbeo1gdlpr2ghsz63zc534.png)
2. g(-3)
![\begin{gathered} g(-3)=\log _2(-3) \\ g(-3)=(\log (-3))/(\log 2)=\text{undefined} \end{gathered}]()
The logarithm of a negative number is undefined
3. g^-1(x)
To find the inverse function you:
-write the function with x and y:
![\begin{gathered} g(x)=\log _2x \\ y=\log _2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ei2tpe9bpw2dc3d01urf2x5fqbf58mzx2l.png)
-Solve variable x:
knowing that:
![\begin{gathered} \log _ba=c \\ b^c=a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7yxxd0mzkqkboxpqdcmvjqah8aig452ol3.png)
![\begin{gathered} y=\log _2x \\ \\ 2^y=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/idf4mqkes1v8v2v704l68nucv736v7hjla.png)
- Change the x for (g^-1(x)) and the y for x:
![g^(-1)(x)=2^x](https://img.qammunity.org/2023/formulas/mathematics/college/qfgtmfs7l7d273ci5ie7ay6uq5cruwcd2y.png)
4.g^-1(-3)
As:
![n^(-m)=(1)/(n^m)](https://img.qammunity.org/2023/formulas/mathematics/college/oqjnyfffcdrhb4api9pkp6ujgi8xxci7ks.png)
![\begin{gathered} g^(-1)(-3)=2^(-3) \\ \\ =(1)/(2^3)=(1)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9j61rx91s1lupjyqa8ec2ejrukj3np64ta.png)