117k views
0 votes
Given these matrices, how are each variable (x,y,z) translated? I'm stuck!

Given these matrices, how are each variable (x,y,z) translated? I'm stuck!-example-1
User Indiantroy
by
8.4k points

1 Answer

3 votes

2A+B=\begin{bmatrix}{5} & {2} & {3} \\ {9} & {0} & {1} \\ {7} & {6} & {-1}\end{bmatrix}

Let's solve for B:


\begin{gathered} \text{Subtract 2A from both sides:} \\ 2A+B-2A=\begin{bmatrix}{5} & {2} & {3} \\ {9} & {0} & {1} \\ {7} & {6} & {-1}\end{bmatrix}-2A \\ \\ B=\begin{bmatrix}{5} & {2} & {3} \\ {9} & {0} & {1} \\ {7} & {6} & {-1}\end{bmatrix}-2\begin{bmatrix}{1} & {2} & {1} \\ {3} & {1} & {0} \\ {2} & {4} & {-1}\end{bmatrix} \\ \\ B=\begin{bmatrix}{5} & {2} & {3} \\ {9} & {0} & {1} \\ {7} & {6} & {-1}\end{bmatrix}-\begin{bmatrix}{2} & {4} & {2} \\ {6} & {2} & {0} \\ {4} & {8} & {-2}\end{bmatrix} \end{gathered}

Therefore:


\begin{gathered} B=\begin{bmatrix}{5-2} & {2-4} & {3-2} \\ {9-6} & {0-2} & {1-0} \\ {7-4} & {6-8} & {-1-(-2)}\end{bmatrix} \\ \\ B=\begin{bmatrix}{3} & {-2} & {1} \\ {3} & {-2} & {1} \\ {3} & {-2} & {1}\end{bmatrix} \end{gathered}

User Danem
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories