For this problem we can start estimating the area for the 8 people
![A=\text{ 6ft}\cdot6ft=36ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/xmc9c0xx4o2f58d2881qid654vcwd7xm0d.png)
And we also know that 8 people fit on this area
Then we can find the total area for the new structure (A1) but first we need to convert first 2yd to ft and 3 mi to ft, we know that:
1 yd= 3ft and 1 mi = 5280 ft.
![\text{ 2yd}\cdot(3ft)/(1yd)=\text{ 6 ft, 3 mi }\cdot\frac{5280\text{ ft}}{1mi}=\text{ 15840 ft}](https://img.qammunity.org/2023/formulas/mathematics/college/rm8dfhcla5j1gly281hujabkvq718d6g1w.png)
![A_{1\text{ }}=2\cdot6ft\cdot15480ft=190080ft^2\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/ewu9jphg9hwhsrljsuxmikaaz8zinqegdx.png)
And then we can use a proportional rule given by:
![\frac{8\text{ people}}{36ft^2}=\text{ }(x)/(190080ft^2)](https://img.qammunity.org/2023/formulas/mathematics/college/til9vpz9ajddctfyoxyxfrvnb5grcf33y3.png)
And solving for x we got:
![x=190080ft^2\cdot\text{ }\frac{8\text{ people}}{36ft^2}=\text{ 42240 people}](https://img.qammunity.org/2023/formulas/mathematics/college/kodci2nk3lo3ud3f63rftdk741gmxkp3yv.png)
And for this case the final answer would be 42240 people