The slope formula for tow given points is
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
where, in our case,
![\begin{gathered} (x_1,y_1)=((2)/(5),(14)/(21)) \\ (x_2,y_2)=((1)/(3),(4)/(12)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pwaz1woisrtrdavyr5t66sy1lg2harbpgk.png)
By substituting these values into our formula, we have
![m=((4)/(12)-(14)/(21))/((1)/(3)-(2)/(5))](https://img.qammunity.org/2023/formulas/mathematics/college/qasodxvqo3f34vnyjxlq2a3m7waaygzd57.png)
Lets compute the numerator first. We have
![(4)/(12)-(14)/(21)=(4\cdot21-12\cdot14)/(12\cdot21)](https://img.qammunity.org/2023/formulas/mathematics/college/xu15adt3kff3yvdwu5tmj2zi6551p6muxn.png)
which gives
![(4)/(12)-(14)/(21)=(84-168)/(12\cdot21)=(-84)/(252)=-(7)/(21)](https://img.qammunity.org/2023/formulas/mathematics/college/ubi6p5vd0j5bywc6s0gi22n464qhp9ps38.png)
Similarly, in the denominator we have
![(1)/(3)-(2)/(5)=(5\cdot1-2\cdot3)/(3\cdot5)=(5-6)/(15)=-(1)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/ariqc1gbikzh3natf8kbn4ufztxysmpvqb.png)
Then, our slope is given by
![m=(-(7)/(21))/(-(1)/(15))](https://img.qammunity.org/2023/formulas/mathematics/college/yn3h9a4pbujzkffmdhw2co6eyc84pz49js.png)
By applying the sandwhich law, we get
then, the slope is m=5. Then, our line has the followin form
![y=mx+b\Rightarrow y=5x+b](https://img.qammunity.org/2023/formulas/mathematics/college/335eqn1ws4rnllyt018gocmefmviy89ci4.png)
where b is the y-intercept. We can find b by substituting one of the 2 given points, that is, if we substitute point (1/3,4,12) into the last expression, we have
![(4)/(12)=5((1)/(3))+b](https://img.qammunity.org/2023/formulas/mathematics/college/7fz87bbiwie0gtk4ccrjwwjdzy7brmgxs7.png)
which gives
![(1)/(3)=(5)/(3)+b](https://img.qammunity.org/2023/formulas/mathematics/college/6w5e7cxhk4n6pg5udrw93wmauzg623pff8.png)
then b is given by
![\begin{gathered} b=(1)/(3)-(5)/(3) \\ b=(1-5)/(3) \\ b=-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mnt8u9pxatiye9r8xfn95wbmki4eanlx7o.png)
And finally, the line equation in slope-intercept form is
![y=5x-(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/fgcecuichpfibhl0ui1h1yawt62gsxc6jl.png)