To find the rise (DISTANCE IN Y) of the triangle CDE you use the coordinates in y for the points E and D.
E (11,5) y=5
D (11,-7) y= -7
The rise is:
![\begin{gathered} rise_{}=y_E-y_D \\ =5-(-7) \\ =5+7=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dqe4mtqzrfuol39ug67dd065m7of5gcy6h.png)
Then, the rise of the given traingle is 12
The run (distance in x) of the triangle CDE is:
C (-10,-7) x=-10
D (11,-7) x=11
![\begin{gathered} \text{run}=x_D-x_E \\ =11-(-10) \\ =11+10=21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k174o77sgzof1g30kw8s1kmln14awlqywg.png)
Then, the run of the given triangle is 21
The rate is:
![\begin{gathered} \text{rate}=\frac{rise}{\text{run}} \\ \\ =(12)/(21)=(4)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s6xg34jaqhj8ee9sbvmo3cfoc5bwoccis1.png)
Then, the rate of the given triangle is 4/7