Given:
Time = 8.30 s ahead of the hemoglobin
For the equation of both glucose and hemoglobin:
![\begin{gathered} √(2D_gt_g)=√(2D_h(t_g+\Delta t)) \\ \\ D_gt_g=D_h(t_g+\Delta t) \\ \\ D_gt_g=D_ht_g+D_h\Delta_t \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1w2wngq233fwpb2nvugj383886vg8z9fkk.png)
Rewrite the equation for tg:
![\begin{gathered} D_gt_g-D_ht_g=D_h\Delta_t \\ \\ t_g(D_g-D_h)=D_h\Delta_t \\ \\ t_g=(D_h\Delta_t)/(D_g-D_h) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ikw7juuq08npby9i7ur58uv6s13w7w2z8f.png)
Where:
Dh is the diffusion coefficient of hemoglobin = 6.9 x 10⁻¹¹ m²/s
Dg is the diffusion coefficient of glucose = 6.7 x 10⁻¹⁰ m²/s
Δt = 8.30 seconds
Substitute these values for the variables in the equation and solve:
![\begin{gathered} t_g=(6.9*10^(-11)*8.30)/(6.7*10^(-10)-6.9*10^(-11)) \\ \\ t_g=(5.727*10^(-10))/(6.01*10^(-10)) \\ \\ t_g=0.953\text{ seconds} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yee2uaipeqg7ji46zagwgs6v1abo8w5evy.png)
Therefore, the time that passes before the glucose is 8.30 s ahead of the hemoglobin is 0.953 seconds.
ANSWER:
0.953 seconds