The formula to be using is as follows:
![A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/39foo2gerf9tf1ffk32zwshrn339mz02kv.png)
But A is the total amount, that is, the initial amount plus the interest amount. If we want just theinterest, I, we need to substract the initial amount:
![\begin{gathered} I=A-P \\ I=P(1+(r)/(n))^(nt)-P \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/layny576j5j3rzfc2658mbr8qaug1szmpr.png)
The given information are:
![\begin{gathered} P=12000 \\ r=0.08 \\ n=1 \\ t=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xfxmmzbwnz5l4tlg71zblftm3g95wrafui.png)
Where r was converted from percentage to decimal and n is 1 because it is compounded only once per year.
So, substituting these values, we have:
![\begin{gathered} I=P(1+(r)/(n))^(nt)-P \\ I=12000(1+(0.08)/(1))^(1\cdot4)-12000 \\ I=12000(1+0.08)^4-12000 \\ I=12000(1.08)^4-12000 \\ I=12000\cdot1.36048\ldots-12000 \\ I=16325.867\ldots-12000 \\ I=4325.867\ldots\approx4325.87 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iqv8os2jv0xjj5dfmt7s2lgpqped6pnzab.png)
So, the interest amount is approximately $4,325.87.