Given the function:
![f(x)=x^3-5x^2+36x-180](https://img.qammunity.org/2023/formulas/mathematics/college/jzanz1phg07gg70foc5eiwxy6cqvxolge2.png)
The given function has 3 zeros
one of the zeros = -6i
so, the second one will be a conjugate to the first zero
So, the second one = 6i
The product of the three zeros = -180
let the third zero = a
So,
![\begin{gathered} -6i\cdot6i\cdot b=-180 \\ -36i^2\cdot b=180 \\ -36\cdot-1\cdot b=180 \\ 36b=180 \\ \\ b=(180)/(35)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pi90u1e58gjzbs2bcq15v53bt6xtwhqggg.png)
So, the third zero = 5
So, the answer will be:
The remaining zeros of the function are: 6i and 5