77.4k views
1 vote
ConvertV3 + i to polar form.

User Galyn
by
7.7k points

1 Answer

2 votes

ANSWER


2(\cos 30+i\sin 30)

Step-by-step explanation

We want to convert the complex number to polar form:


\sqrt[]{3}+i

The general polar form of a complex number is:


r(\cos \theta+i\sin \theta)

where:


\begin{gathered} r=\sqrt[]{x^2+y^2} \\ \theta=\tan ^(-1)((y)/(x)) \end{gathered}

Note: x is the real part of the complex number while y is the coefficient of i.

Therefore, from the number given:


\begin{gathered} x=\sqrt[]{3} \\ y=1 \end{gathered}

We now have to find r and θ:


\begin{gathered} \Rightarrow r=\sqrt[]{(\sqrt[]{3})^2+1^2}=\sqrt[]{3+1} \\ r=\sqrt[]{4} \\ r=2 \\ \Rightarrow\theta=\tan ^(-1)(\frac{1}{\sqrt[]{3}}) \\ \theta=30\degree \end{gathered}

Therefore, the polar form of the complex number is:


\begin{gathered} 2\cos 30+2i\sin 30 \\ \Rightarrow2(\cos 30+i\sin 30) \end{gathered}

User Irmen De Jong
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories