221k views
4 votes
Find exact tan0, and csc0, where is the angle shown in the figure. Give exact values not decimals.

Find exact tan0, and csc0, where is the angle shown in the figure. Give exact values-example-1
User Horsing
by
3.6k points

1 Answer

4 votes

Solution:

Given the triangle below:

To find the exact values of tan θ, cos θ, and csc θ.


\begin{gathered} adj=√((hyp)^2-(opp)^2) \\ =√(8^2-7^2) \\ =√(15) \end{gathered}

A) Tan θ:


\begin{gathered} tan\theta=(opposite)/(adjacent) \\ =(7)/(√(15))*(√(15))/(√(15)) \\ \Rightarrow\tan\theta=(7√(15))/(15) \end{gathered}

B) cos θ:


\begin{gathered} \cos\theta=(adjavent)/(hypotenuse) \\ =(√(15))/(8) \\ \Rightarrow\cos\theta=(√(15))/(8) \end{gathered}

C) csc θ:


\begin{gathered} csc\theta=(1)/(\sin\theta)=(1)/((opposite)/(hypotenuse)) \\ =(1)/((7)/(8)) \\ \\ \Rightarrow csc\theta=(8)/(7) \end{gathered}

Hence, we have


\begin{gathered} \tan\theta=(7√(15))/(15) \\ \\ \cos\theta=(√(15))/(8) \\ \\ csc\theta=(8)/(7) \\ \end{gathered}

Find exact tan0, and csc0, where is the angle shown in the figure. Give exact values-example-1
User Druid
by
3.3k points