204k views
5 votes
Rationalize the denominator of the fraction below. What is the new denominator? 5 3 + V6 O A. 3 B. -3 O C.-27 O D. 15

Rationalize the denominator of the fraction below. What is the new denominator? 5 3 + V-example-1
User JamesArmes
by
3.6k points

1 Answer

5 votes

We multiply the numerator and denominator by the conjugate of the denominator to rationalize it. The conjugate of the denominator is the same expression but with the opposite sign.


\begin{gathered} \text{ Denominator }=3+\sqrt[]{6} \\ \text{ Conjugate of the denominator }=3-\sqrt[]{6} \end{gathered}

Then, we have:


\begin{gathered} \frac{5}{3+\sqrt[]{6}}=\frac{5}{3+\sqrt[]{6}}\cdot\frac{3-\sqrt[]{6}}{3-\sqrt[]{6}} \\ \frac{5}{3+\sqrt[]{6}}=\frac{5(3-\sqrt[]{6})}{(3+\sqrt[]{6})(3-\sqrt[]{6})} \end{gathered}

Now, we apply the difference of squares formula.


(a-b)(a+b)=a^2-b^2
\begin{gathered} \frac{5}{3+\sqrt[]{6}}=\frac{5\cdot3-5\cdot\sqrt[]{6}}{3^2-(\sqrt[]{6})^2} \\ \frac{5}{3+\sqrt[]{6}}=\frac{15-5\sqrt[]{6}}{9-6} \\ \frac{5}{3+\sqrt[]{6}}=\frac{15-5\sqrt[]{6}}{3} \end{gathered}

Therefore, after rationalizing the denominator of the given fraction, the new denominator is 3.

User Dave Pacheco
by
3.2k points