We know,
1 penny=1cent.
1 nickel=5 cent.
1 dime=10 cent
1 quarter=25 cent.
1 dollar=100 cent
Given,
There are 143 more dimes than quarters, 3 times as many nickels as quarters
and 8 more than 25 times as many pennies as quarters
Let Q be the number of quarters. So, the number of dimes is,
D=143+Q.
The number of nickels is,
N=3Q.
The number of pennies is,
P=8+25Q.
Let p, n, d, q, t represent respectively the value of penny, nickel, dime, quarter in cents.
Given, the total amount is T=$35.38.
The total amount in cents can be found as,
![\begin{gathered} T=35.38*100\text{ cents} \\ =3538\text{ cents} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jye6u8h2c9mugghe4xmtmes6pd2a3oi938.png)
Hence, the total amount in cents can be expressed as,
![T=Dd+Nn+Pp+Qq](https://img.qammunity.org/2023/formulas/mathematics/college/btrxb76edujy4k6ywgpbikc8jc4s0jzirh.png)
Now put the values in the expression.
![\begin{gathered} 3538\text{ cents=}(143+Q)*10cent+3Q*5cent+(8+25Q)*1\text{ cent+Q}*25\text{cent} \\ 3538=143*10+10Q+15Q+8+25Q_{}+25Q \\ 3538=1430+75Q+8 \\ 3538=1438+75Q \\ 3538-1438=75Q \\ 2100=75Q \\ (2100)/(75)=Q \\ 28=Q \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h1bngot7awrnzua4gqkkjzc7vi8nzz8xw5.png)
Now, the number of dimes can be calculated as,
![D=143+Q=143+28=171](https://img.qammunity.org/2023/formulas/mathematics/college/y7l5zgcw8iwfowpxc3w9qipqnffml86mvg.png)
The number of nickels can be calculated as,
![N=3* Q=84](https://img.qammunity.org/2023/formulas/mathematics/college/y7uz6mslrekajsa45tyrqgkb8dbotjz94m.png)
The number of pennies can be calculated as,
![P=8+25Q=8+25*28=708](https://img.qammunity.org/2023/formulas/mathematics/college/ct2xns1er1ey7kyz67wvq8u18yqia8joet.png)
Therefore, there are 28 quarters, 171 dimes, 84 nickels and 708 p