The given information is:
-The dimensions of a box are x, 2x, and 3x.
-Each dimension is increased by 5, then the new dimensions are:
(x+5)
(2x+5)
(3x+5)
The volume of the box is given by the multiplication of its 3 dimensions, then it is:
![V=(x+5)(2x+5)(3x+5)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/ixebppegnebtvne0uu1sb214il49qd6qpk.png)
Let's apply the distributive property to this equation:
![\begin{gathered} V=(x\cdot2x+x\cdot5+5\cdot2x+5\cdot5)(3x+5) \\ V=(2x^2+5x+10x+25)(3x+5) \\ V=(2x^2+15x+25)(3x+5) \\ V=2x^2\cdot3x+2x^2\cdot5+15x\cdot3x+15x\cdot5+25\cdot3x+25\cdot5 \\ V=6x^3+10x^2+45x^2+75x+75x+125 \\ V=6x^3+55x^2+150x+125 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/csze4d3c6upkytbmlltunlhtvi3site5j6.png)
This function above is the volume of the box.