105k views
4 votes
Let 0 be an angle in quadrant iv such that

Let 0 be an angle in quadrant iv such that-example-1

1 Answer

6 votes

Answer


\begin{gathered} \tan \theta=-(8)/(15) \\ \cos ^{}\theta=(15)/(17) \end{gathered}

Step-by-step explanation

Given:


\begin{gathered} \theta\text{ is in quadrant VI,} \\ \csc \theta=-(17)/(8) \end{gathered}

Using trigonometric identity, To find the exact value of tan θ


1+\cot ^2\theta=\csc ^2\theta
\begin{gathered} 1+\cot ^2\theta=(-(17)/(8))^2 \\ 1+\cot ^2\theta=(289)/(64) \\ \cot ^2\theta=(289)/(64)-1 \\ \cot ^2\theta=(289-64)/(64) \\ \cot ^2\theta=(225)/(64) \\ \cot ^{}\theta=\pm\sqrt[]{(225)/(64)} \\ \cot \theta=\pm(15)/(8) \\ \text{But cot }\theta=(1)/(\tan \theta) \\ \Rightarrow\text{tan }\theta=\pm(8)/(15) \\ \text{Since }\theta\text{ is in quadrant VI, then tan }\theta\text{ is negative} \\ \tan \theta=-(8)/(15) \end{gathered}

To find the exact value of cos θ


\begin{gathered} \text{Using trigonometric identuty} \\ \cos ^2\theta=(1)/(1+\tan ^2\theta) \\ \cos ^2\theta=(1)/(1+((64)/(225))) \\ \cos ^2\theta=(1)/((289)/(225)) \\ \cos ^2\theta=(225)/(289) \\ \cos ^{}\theta=\pm\sqrt[]{(225)/(289)} \\ \cos ^{}\theta=\pm(15)/(17) \\ \text{Since }\theta\text{ is in quadrant VI, cos }\theta\text{ is positve} \\ \therefore\cos ^{}\theta=(15)/(17) \end{gathered}

θ

User MS Ibrahim
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories