Given equation:
The general expression for a parabola equation in vertex form:
![y^2\text{ =4ax}](https://img.qammunity.org/2023/formulas/mathematics/college/vafl1g891mfie5ne480udbvjc16hf92hni.png)
Where the axis of the parabola is the x-axis and the origin is zero
Writing the equation in vertex form takes the following steps:
1. Re-arrange the equation:
![\begin{gathered} y^2-x-4y+3\text{ = 0} \\ y^2-4y\text{ - x + 3 = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/69yzrol65a0hurwk9qx0fdb0jyeoaugvfb.png)
Factoring out:
![(y-2)^2-4\text{ -x + 3 = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/ymsa01kt62laqmzs3nc3vyqmhm4ix3hp1h.png)
Re-arranging further:
![(y-2)^2\text{ = (x+1)}](https://img.qammunity.org/2023/formulas/mathematics/college/f04wx0krlwfxyca9a91dpvjidllwaokhb6.png)
Hence, the equation of the parabola is Option C