Solution
We have the proportion of the freshwater fish is
![\begin{gathered} p_0=23\% \\ p_0=0.23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rq9u60258edaqv5k7nbphh3p8p2g2k1tad.png)
Now, from the sample we have the proportion
![\begin{gathered} p=(48)/(200) \\ p=0.24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7f5obkpd6djrt67tg8xvc0etebjindm1c3.png)
To test the hypothesis, we have
![\begin{gathered} H_0\colon p_0=0.23 \\ H_1\colon p_0\\e0.23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gilwyaq81gmflk4lnso6penm2a498522g0.png)
We have
![\alpha=0.05,n=200](https://img.qammunity.org/2023/formulas/mathematics/college/e7bheol8rl6tt8k48ijz34a0w0jmle5n13.png)
The test statistics
![z=\frac{p-p_0}{\sqrt[]{(p_0(1-p_0))/(n)}}](https://img.qammunity.org/2023/formulas/mathematics/college/kgg2m95d7p2pakqsfgeh95f4oc6ubhrnut.png)
Substituting the parameters, we obtain
![\begin{gathered} z=\frac{p-p_0}{\sqrt[]{(p_0(1-p_0))/(n)}} \\ z=\frac{0.24-0.23}{\sqrt[]{(0.23(1-0.23))/(200)}} \\ z=\frac{0.01}{\sqrt[]{(0.23*0.77)/(200)}} \\ z=0.3360514064 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hf63k0tkqpozymggs2w6irw0g7ym4ksqsv.png)
Therefore, the test statistics is
![z=0.336\text{ (to thr}ee\text{ decimal places)}](https://img.qammunity.org/2023/formulas/mathematics/college/ivk7sxx7syz70rxeize6b67jcal24lw7r7.png)
To find the P - value
Using the table, the p - value for the z score of 0.336 is
![\begin{gathered} p-value=0.736871 \\ p-value=0.7369\text{ (to four decimal places)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ksih68y6ur3vvqboolavo3yowq6hglwfoc.png)
Notice that
![p-value=0.7369>0.05=\alpha](https://img.qammunity.org/2023/formulas/mathematics/college/35tz94848q76rrw4obzmz6stq2fn0pc4q7.png)
Therefore, since the p -value is greater than the level of significance, we fail to reject the null hypothesis, That is we support the null hypothesis