119k views
0 votes
I need help with this practice problem I have attempted this and I’ll show you a picture later of it

I need help with this practice problem I have attempted this and I’ll show you a picture-example-1
User Pronskiy
by
8.1k points

1 Answer

2 votes


(50440)/(729)

Step-by-step explanation

A geometric serie has a common ratio, the formula for the nth term is


\begin{gathered} a_n=a\cdot r^(n-1) \\ where \\ a_n=n^(th)\text{ term of the sequ}ence \\ a=\text{ first term of the sequence} \\ r\text{ is the common ratio} \end{gathered}

so

Step 1

find the geometric serie

a) find the common ratio

let


\begin{gathered} \text{first term= 120, so} \\ a_n=a\cdot r^(n-1) \\ 120=a\cdot r^(1-1) \\ 120=a\cdot r^0=a\cdot1 \\ 120=a \end{gathered}

so

a=120

and


\begin{gathered} \text{second term} \\ -80=a\cdot r^(2-1) \\ -80=120\cdot r^1 \\ -(80)/(120)=r \\ r=-(2)/(3) \\ \text{hence} \\ a_n=\text{ 120(}(-2)/(3))^(n-1) \end{gathered}

so, the sequence is


a_n=\text{ 120(}(-2)/(3))^(n-1)

let's check


\begin{gathered} a_n=\text{ 120(}(-2)/(3))^(n-1) \\ a=1 \\ a_1=\text{ 120(}(-2)/(3))^(1-1)=\text{120(}(-2)/(3))^0=120\rightarrow ok \\ a=2 \\ a_2=\text{120(}(-2)/(3))^(2-1)=120\cdot(-(2)/(3))=-80\rightarrow ok \\ a=3 \\ a_3=\text{ 120(}(-2)/(3))^(3-1)=120((-2)/(3))^2=53.33=(160)/(3)\rightarrow ok \\ a=\text{ 4} \\ a_4=\text{ 120(}(-2)/(3))^(4-1)=\text{120(}(-2)/(3))^3=-35.55\rightarrow ok \end{gathered}

Step 2

now, let's find the sum:

the sum of geometric serie is give by


\begin{gathered} S_n=(a(1-r^n))/(1-r) \\ \end{gathered}

let n= 8,

replace


\begin{gathered} S_n=(120(1-(-(2)/(3))^8))/(1-(-(2)/(3))) \\ S_n=(120(1-(-(2)/(3))^8))/(1+(2)/(3)) \\ S_n=\frac{120(1-((256)/(6561))^{})}{(5)/(3)} \\ S_n=\frac{120(1-((256)/(6561))^{})}{(5)/(3)} \\ S_n=(120((6305)/(6561)))/((5)/(3)) \\ S_n=(120((6305)/(6561)))/((5)/(3))=(120\cdot6305\cdot3)/(6561\cdot5)=(2269800)/(32805)=(50440)/(729) \end{gathered}

therefore, the answer is


(50440)/(729)

I hope this helps you

User Vasiliy Galkin
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.