100k views
3 votes
Find the measure of angle B.a=63.63 mi, b= 43.59 mi, C= 45.4 degrees

1 Answer

6 votes

Let us begin by illustrating the problem using a diagram:

To find the measure of angle B, we need to first find the length of the side opposite angle C using cosine rule.

Cosine rule is defined to be:


c^2\text{ = a}^2\text{ + b}^2\text{ - 2abCosC}

Substituting the given sides and angle:

Let c be the side opposite angle C, b be the side opposite angle B and a be the side opposite angle A


\begin{gathered} c^2\text{ = 63.63}^2\text{ + 43.59}^2\text{ - 2}*\text{ 63.63 }*\text{ 43.59 }*\text{ cos45.4} \\ c^2\text{ = 2053.837} \\ c\text{ =}√(2053.837) \\ c\text{ = 45.32 mi} \end{gathered}

Hence, we have the triangle:

The next step is to use sine rule to find the measure of angle B

sine rule is defined as:


\frac{sin\text{ A}}{a}=\frac{sin\text{ B}}{b}\text{ = }\frac{sin\text{ C}}{c}

Applying sine rule:


\begin{gathered} \frac{sin\text{ C}}{c}=\text{ }\frac{sin\text{ B}}{b} \\ \frac{sin\text{ 45,4}}{45.32\text{ }}\text{ = }\frac{sin\text{ B}}{43.59} \\ sin\text{ B= }\frac{sin45.4\text{ }*\text{ 43.49}}{45.32} \\ sin\text{ B = 0.68327} \\ B=\text{ }\sin^(-1)0.68327 \\ B\text{ = 43.0997} \\ B\text{ }\approx\text{ 43.1}^0 \end{gathered}

Answer:

Measure of angle B = 43.1 degrees

Find the measure of angle B.a=63.63 mi, b= 43.59 mi, C= 45.4 degrees-example-1
Find the measure of angle B.a=63.63 mi, b= 43.59 mi, C= 45.4 degrees-example-2
User Vinay Kumar Chella
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories