65.2k views
3 votes
How do I find the primary and reciprocal ratios of the given?

How do I find the primary and reciprocal ratios of the given?-example-1

1 Answer

1 vote

Make a right triangle using the point on the terminal arm in standard position.

Find the length of the hypotenuse using pythagorean theorem


\begin{gathered} c^2=a^2+b^2 \\ c^2=(-8)^2+(7)^2 \\ c^2=64+49 \\ c^2=113 \\ c=\sqrt[]{113} \end{gathered}

Recall the three primary trigonometric ratios


\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \cos \theta=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \tan \theta=\frac{\text{opposite}}{\text{adjacent}} \end{gathered}

The opposite side of angle θ is -8.

The adjacent side of angle θ is 7

The hypotenuse is square root of 113.

Substitute the following to get their ratios


\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}=\frac{-8}{\sqrt[]{113}} \\ \text{rationalize and this becomes} \\ \frac{-8}{\sqrt[]{113}}\cdot\frac{\sqrt[]{113}}{\sqrt[]{113}}=\frac{-8\sqrt[]{113}}{113} \\ \sin \theta=\frac{-8\sqrt[]{113}}{113} \\ \\ \cos \theta=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{7}{\sqrt[]{113}} \\ \text{rationalize the ratio and this becomes} \\ \frac{7}{\sqrt[]{113}}\cdot\frac{\sqrt[]{113}}{\sqrt[]{113}}=\frac{7\sqrt[]{113}}{113} \\ \cos \theta=\frac{7\sqrt[]{113}}{113} \\ \\ \tan \theta=\frac{\text{opposite}}{\text{adjacent}}=(-8)/(7) \\ \tan \theta=(-8)/(7) \end{gathered}

The reciprocal of the primary trigonometric ratios are the following


\begin{gathered} \csc \theta=\frac{\text{hypotenuse}}{\text{opposite}} \\ \sec \theta=\frac{\text{hypotenuse}}{\text{adjacent}} \\ \cot \theta=\frac{\text{adjacent}}{\text{opposite}} \end{gathered}

Do the same with the previous ratios, and substitute to get their ratios


\begin{gathered} \csc \theta=\frac{\text{hypotenuse}}{\text{opposite}}=\frac{\sqrt[]{113}}{-8} \\ \csc \theta=-\frac{\sqrt[]{113}}{8} \\ \\ \sec \theta=\frac{\text{hypotenuse}}{\text{adjacent}}=\frac{\sqrt[]{113}}{7} \\ \sec \theta=\frac{\sqrt[]{113}}{7} \\ \\ \cot \theta=\frac{\text{adjacent}}{\text{opposite}}=(7)/(-8) \\ \cot \theta=-(7)/(8) \end{gathered}

How do I find the primary and reciprocal ratios of the given?-example-1
User Jiselle
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories