Given:
Piston 1 has an area
![A_1=0.065\text{ m}^2](https://img.qammunity.org/2023/formulas/physics/college/r369gpxqobgg2a1pwrkuip215ngdu2yagl.png)
and the force applied on this piston is
![F_1=\text{ 400 N}](https://img.qammunity.org/2023/formulas/physics/college/6kk0dwyp44h7rvtnnvx72mhv3kyac1dttz.png)
The force on piston 2, which is the weight of the car, is
![F_2=6000\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/hb87ob1nxnxpotb01qkn7y7k13ptj1aq9l.png)
Required: The area of piston 2.
Step-by-step explanation:
The formula that can be obtained by balancing the pressures is
![\begin{gathered} P_1=P_2 \\ (F_1)/(A_1)=(F_2)/(A_2) \\ A_2=(F_2A_1)/(F_1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6rlebfxxjgef5d7y59pu5in4kkco4p6w79.png)
On substituting the values, the area of the second piston will be
![\begin{gathered} A_2=(6000*0.065)/(400) \\ =0.975\text{ m}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/h14wqr38fv153devi64pakz3pl2en43jzx.png)
Final Answer: The area of the piston lifting the car is 0.975 meter-squared.