78.6k views
1 vote
determine whether each identity is true or false (a-b) (a-b) = a²-b² true or false (a+b) (a+b) =a²+2ab +b² true or false(a-b) (a-b) = a²-2ab+b² true or false(a+b) (a-b) = a²+2ab-b² true or false(a+b) (a-b) = a²-b² true or false(a+b) (a+b) = a²+b² true or false

2 Answers

4 votes

false

true true

false true false

User Kkrugler
by
5.2k points
2 votes

1)


(a-b)(a-b)=a^2-b^2

we can use the distribution propertie:


\begin{gathered} (a-b)(a-b)=a^2-ab-ab+b^2 \\ (a-b)(a-b)=a^2-2ab+b^2 \end{gathered}

Is false

2)


(a+b)(a+b)=a^2+2ab+b^2

Again, we can use the distribution propertie:


\begin{gathered} (a+b)(a+b)=a^2+ab+ab+b^2 \\ (a+b)(a+b)=a^2+2ab+b^2 \end{gathered}

Is true

3) is the same as the numeral 1) so in this case the experession is true

4)


(a+b)(a-b)=a^2+2ab-b^2

Again, we can use the distribution propertie:


\begin{gathered} (a+b)(a-b)=a^2-ab+ab-b^2 \\ (a+b)(a-b)=a^2-b^2 \end{gathered}

Is false

5) is the same as the numeral 4) so in this case is true

6)


(a+b)(a+b)=a^2+b^2

Using the distribution:


\begin{gathered} (a+b)(a+b)=a^2+ab+ab+b^2 \\ (a+b)(a+b)=a^2+2ab+b^2 \end{gathered}

So is false

User Dayanruben
by
4.9k points