ANSWER
![\begin{gathered} (a)a=9.2 \\ (b)b=18.5 \\ (c)A=30\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5q4rnewsdvj9ng7h04g41iqi396ytxt1cj.png)
Step-by-step explanation
(a) To find the value of a, we have to apply trigonometric ratios, SOHCAHTOA, for tangent for right triangles:
![\tan 60=(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/s12ib0e0b8e51o2w7glujtwyayut8ep27l.png)
Therefore, we have that:
![\begin{gathered} \tan 60=(16)/(a) \\ \Rightarrow a=(16)/(\tan 60) \\ a=9.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tjnl8zkdrq9674avytdnt77tmwiwh3yrwe.png)
(b) To find the value of b, we have to apply trigonometric ratios, SOHCAHTOA, for sine for right triangles:
![\sin 60=\frac{\text{opposite}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/5fornqe4bog6ywxxavz3elf9tbj0dygj9a.png)
Therefore, we have that:
![\begin{gathered} \sin 60=(16)/(b) \\ \Rightarrow b=(16)/(\sin 60) \\ b=18.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rotyuzflbexgm8mcn5h7gzwyb74w37lwh6.png)
(c) To find the measure of A, apply the total angle in a triangle.
The sum of angles in a triangle is 180 degrees. This implies that:
![\begin{gathered} 90\degree+60\degree+A=180\degree \\ 150\degree+A=180 \\ \Rightarrow A=180\degree-150\degree \\ A=30\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/akdghoo5bljfvz3at7ph9nt09mn43uw40t.png)