Since the function is linear, we know that it is a line.
Let's use points (2,1) and (4,4) to calculate the slope:
![m=(4-1)/(4-2)\rightarrow m=(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/83qw0w6eg9n22caefpoqhqcwf1t2rt1jzh.png)
We can use this slope, point (2,1) and the slope-intercept form to find an equation, as following:
![\begin{gathered} y-1=(3)/(2)(x-2) \\ \\ y-1=(3)/(2)x-3 \\ \\ \Rightarrow y=(3)/(2)x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n960qd2gjjpvk0323naunt4fttt61zboj0.png)
Thereby, our function would be:
![f(x)=(3)/(2)x-2](https://img.qammunity.org/2023/formulas/mathematics/college/3vf6mbkgequt38ks6m2uw7jr66i6l30wna.png)
To fill the table,
![\begin{gathered} -2=(3)/(2)x-2 \\ \rightarrow0=(3)/(2)x \\ \\ \Rightarrow x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u8phw5h89wa11nkvcxh5vjo2m3qb5sq4qh.png)
![\begin{gathered} f(x)=(3)/(2)(-2)-2 \\ \Rightarrow f(x)=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mdky2ze62ikd8dmgishv4l3lzen5btu9t7.png)
The complete table would be: