We are given a rhombus figure.
Recall that the consecutive angles in a rhombus add up to 180°
This means that the sum of m∠P and m∠S must be equal to 180°
![m\angle P+m\angle S=180\degree](https://img.qammunity.org/2023/formulas/mathematics/college/1h2fscn375dqyzxy4ipkq0zlfdzz9mvj21.png)
Let us substitute the given values into the above equation and solve for b
![\begin{gathered} m\angle P+m\angle S=180 \\ 2b-98+2b-58=180 \\ 2b+2b-98-58=180 \\ 4b-156=180 \\ 4b=180+156 \\ 4b=336 \\ b=(336)/(4) \\ b=84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5n7omw4rrr44uevt6yju1gsf63gr9zmedf.png)
So, the value of b is 84
Now we can find the angle m∠P
![\begin{gathered} m\angle P=2b-98\degree \\ m\angle P=2(84)-98\degree \\ m\angle P=168\degree-98\degree \\ m\angle P=70\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ide1mq5ai5b7ktttyv1vbsv6jmsgx9cxvo.png)
Therefore, the value of m∠P is 70°