64.7k views
1 vote
Prove ABCD is a square A(2,4) B(4,-1) C(-1,-3) D(-3,2)

1 Answer

5 votes

First, let's check if all segments have the same length, calculating the distance between the points using the formula:


d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}

So we have:


\begin{gathered} AB\colon \\ d=\sqrt[]{(-1-4)^2+(4-2)^2}=\sqrt[]{25+4}=\sqrt[]{29} \\ \\ BC\colon \\ d=\sqrt[]{(-3-(-1))^2+(-1-4)^2}=\sqrt[]{4+25}=\sqrt[]{29} \\ \\ CD\colon \\ d=\sqrt[]{(2-(-3))^2+(-3-(-1))^2_{}_{}}=\sqrt[]{25+4}=\sqrt[]{29} \\ \\ AD\colon \\ d=\sqrt[]{(4-2)^2+(-3-2)^2}=\sqrt[]{4+25_{}}=\sqrt[]{29} \end{gathered}

Now, we need to check the slopes of each segment. The adjacent sides need to be perpendicular, so their slopes need to have the relation:


m_2=-(1)/(m_1)

Calculating the slopes with the formula below, we have:


\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ \\ AB\colon \\ m=(-1-4)/(4-2)=-(5)/(2) \\ \\ BC\colon \\ m=\frac{-3-(-1)_{}}{-1-4}=(2)/(5) \\ \\ CD\colon \\ m=(2-(-3))/(-3-(-1))=-(5)/(2) \\ \\ AD\colon \\ m=(4-2)/(2-(-3))=(2)/(5) \end{gathered}

So all adjacent sides are perpendicular.

All sides have the same length and all adjacent sides are perpendicular, therefore ABCD is a square.

User Sinwav
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories