Given the equation:
![3\sin ^2x\cot x-3\cot x=0](https://img.qammunity.org/2023/formulas/mathematics/college/pzzr00a84v3bzytxs1cjx6ubriuws44bku.png)
Let's solve the given equation over the interval:
![\lbrack0^o,360^o)](https://img.qammunity.org/2023/formulas/mathematics/college/jjr3ozz83yqt368telmwun2hzp8974ms44.png)
Add 3cotx to both sides of the equation:
![\begin{gathered} 3\sin ^2x\cot x-3\cot x+3\cot x=0+3\cot x \\ \\ 3\sin ^2x\cot x=3\cot x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3d28b1px7ehp2fav80ivv6guvpsdusc94v.png)
Cancel the common factors:
![3\sin ^2x=3](https://img.qammunity.org/2023/formulas/mathematics/college/d580szjbw72ogsomvpx0maznoy87whfadh.png)
Divide both sides by 3:
![\begin{gathered} (3\sin ^2x)/(3)=(3)/(3) \\ \\ \sin ^2x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dwmzerc6yx9jxkqffc0g1voqspd9miek4m.png)
Take the square root of both sides:
![\begin{gathered} \sin x=\sqrt[]{1} \\ \\ \sin x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/17on48nuy3jvlv9xmuqtxiqjbjzmj89672.png)
Take the sine inverse of both sides:
![\begin{gathered} x=\sin ^(-1)(1) \\ \\ x=90^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/khky4hv54cmbpcddcmo7b789prlo83qanf.png)
Now, the sine function is positive in quadrant I and II, to find the second solution, add 180 to the reference angle.
x = 90 + 180 = 270 degrees.
Therefore, the solutions to the equation on the given interval:
x = 90⁰, 270⁰
ANSWER:
x = 90⁰, 270⁰