177k views
4 votes
Detmermine the best method to solve the following equation, then solve the equation. (3x-5)^2=-125

Detmermine the best method to solve the following equation, then solve the equation-example-1

1 Answer

6 votes

For the given equation;


(3x-5)^2=-125

We shall begin by expanding the parenthesis on the left side, after which we would combine all terms on and move all of them to the left side, which shall yield a quadratic equation. Then we shall solve.

Let us begin by expanding the parenthesis;


\begin{gathered} (3x-5)^2\Rightarrow(3x-5)(3x-5) \\ (3x-5)(3x-5)=9x^2-15x-15x+25 \\ (3x-5)^2=9x^2-30x+25 \end{gathered}

Now that we have expanded the left side of the equation, we would have;


\begin{gathered} 9x^2-30x+25=-125 \\ \text{Add 125 to both sides and we'll have;} \\ 9x^2-30x+25+125=-125+125 \\ 9x^2-30x+150=0 \end{gathered}

We shall now solve the resulting quadratic equation using the quadratic formula as follows;


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Where;} \\ a=9,b=-30,c=150 \\ x=\frac{-(-30)\pm\sqrt[]{(-30)^2-4(9)(150)}}{2(9)} \\ x=\frac{30\pm\sqrt[]{900-5400}}{18} \\ x=\frac{30\pm\sqrt[]{-4500}}{18} \\ x=\frac{30\pm\sqrt[]{-900*5}}{18} \\ x=\frac{30\pm\sqrt[]{-900}*\sqrt[]{5}}{18} \\ x=\frac{30\pm30i\sqrt[]{5}}{18} \\ \text{Therefore;} \\ x=\frac{30+30i\sqrt[]{5}}{18},x=\frac{30-30i\sqrt[]{5}}{18} \\ \text{Divide all through by 6, and we'll have;} \\ x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3} \end{gathered}

ANSWER:


x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3}

User Erik Aronesty
by
4.7k points