hello
the question is a quadratic equation and we are asked to use completing the squares method.
to solve this, let's use some basic steps
step 1
divide through the equation by the coefficient of x^2
![\begin{gathered} x^2+4x-60=0 \\ (x^2)/(1)+(4x)/(1)-(60)/(1)=(0)/(1) \\ x^2+4x-60=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qtyovov8a4h0whk7y9wrlolynjubtjyy5b.png)
step 2
now we have to know that
![\begin{gathered} ax^2+bx+c=0 \\ where\text{ we can relate this to out own equation} \\ x^2+4x-60 \\ a=1,b=4,c=-60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vxuygkw7kh711dvlmgnrjtrgp5qztfojbc.png)
![x^2+4x=60](https://img.qammunity.org/2023/formulas/mathematics/college/f82txa4x7hdt9fdm9hyncu6hcha0nc6ztl.png)
step 3
complete the square on the left hand side of the equation and balance this by adding the same value on the right hand side of the equation
![\begin{gathered} x^2+4x+4=60+4 \\ (x+2)^2=64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/plhkjlkuh1h2l1zgvpe4xtl7u031xtlou7.png)
step 4
take the square roots on both sides of the equation
![\begin{gathered} (x+2)^2=64 \\ \sqrt[]{(x+2)^2_{}}=\sqrt[]{64} \\ x+2=\pm8 \\ x=2+8=10 \\ or \\ x=2-8=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7ju2vzlnad0zlju4mzxdytflfqnv75jv0.png)
from the calculations above, the value of x is either 10 or -8