Answer:
Given that,
Two balls are drawn in succession without replacement from a box containing 5 red balls and 7 black balls.
The possible outcomes and the values of the random variable X, where X is the number of red balls.
1) To find the probability distribution of the number of red balls.
Total possible outcome is
![12C_2=(12*11)/(2)=66](https://img.qammunity.org/2023/formulas/mathematics/college/ka9ljf77gobg8fs1zdlnn0mqz03a53fcxf.png)
We get the X=0,1,2
If there is no red ball,
Then X=0, we get
P(X=0) is,
![P(X=0)=\frac{5C_0*7C_2^{}}{12C_2}](https://img.qammunity.org/2023/formulas/mathematics/college/f5usp8shwh3ycj2k90hxz0neijdjit5qhz.png)
we get,
![P(X=0)=(1*7*3)/(6*11)=(21)/(66)](https://img.qammunity.org/2023/formulas/mathematics/college/5vowu7aanhss2013nu7natlzl9bnpqfaxs.png)
If there is 1 red ball then X=1
we get,
P(X=1) is
![P(X=1)=\frac{5C_1*7C^{}_1}{12C_2}](https://img.qammunity.org/2023/formulas/mathematics/college/arevfg4w1gzinl12wb1znf3q37oj8fw10h.png)
![P(X=1)=(5*7)/(66)=(35)/(66)](https://img.qammunity.org/2023/formulas/mathematics/college/crmiez81fzsqnwirychmxg9gmvlc3c1zl5.png)
If there is 2 red balls then X=2
we get,
P(X=2) is
![P(X=2)=\frac{5C_2*7C^{}_0}{12C_2}=(10)/(66)](https://img.qammunity.org/2023/formulas/mathematics/college/mxcajkfvwyw6yq9f903me7mybfnyldzaj5.png)
2)To find cumulative distribution function F(x)
![F(x)=P(X\leq x)](https://img.qammunity.org/2023/formulas/mathematics/college/d9h1l1e2gvu91xgz5b0uanyi70oxgovgs2.png)
when x=0
we get,
![\begin{gathered} F(0)=P(X\leq0)=P(X=0) \\ F(0)=(21)/(66) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/it2slc7ehegj5fgfojod1vf4l7ytiamsca.png)
When x=1 we get
![F(1)=P(X\leq1)=P(X=0)+P(X=1)](https://img.qammunity.org/2023/formulas/mathematics/college/c5mk0fplq1k60on7h5t9gjbudapwpcrcok.png)
![\begin{gathered} F(1)=(21)/(66)+(35)/(66)=(56)/(66) \\ F(1)=(56)/(66) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j1524c3ahmima0shorl2gtpq6jjgqoo0d0.png)
When x=2 we get,
![\begin{gathered} F(2)=P(X\leq2)=P(X=0)+P(X=1)+P(X=2) \\ F(2)=(21)/(66)+(35)/(66)+(10)/(66)=(66)/(66) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fktho02cunw30lp6ee90wwxdimdmhwxg8p.png)
![F(2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/oxrzpqrywj48zhpqlfzlhkq9v8sqx7nh7w.png)