157k views
1 vote
Show how to find the inverse of f(x)=x^3-5. Calculate 3 points on f(x) and use these points to show that the inverse is correct

User Vrbilgi
by
4.2k points

1 Answer

3 votes

Step 1

Given;


f(x)=x^3-5

Required; To find the inverse of f(x)

Step 2

Find the inverse


\begin{gathered} let\text{ y=f\lparen x\rparen} \\ y=x^3-5 \\ replace\text{ y with x and x with y} \\ x=y^3-5 \end{gathered}

Then solve for y


\begin{gathered} x=y^3-5 \\ y^3=x+5 \\ Take\text{ cube root of both sides} \\ \sqrt[3]{y^3}=\sqrt[3]{x+5} \\ y=\sqrt[3]{x+5} \end{gathered}

Hence,


f^(-1)(x)=\sqrt[3]{x+5}

Step 3

Choose 3 points on f(x) and use these points to show that the inverse is correct.

The 3 points are;


(2,3),\text{ \lparen0,-5\rparen, \lparen-2,-13\rparen}
\begin{gathered} f^(-1)(x)=\sqrt[3]{x+5} \\ (2,3),\text{ where for inverse x=3, y=2} \\ f^(-1)(x)=\sqrt[3]{3+5} \\ f^(-1)(x)=2 \end{gathered}
\begin{gathered} f^(-1)(x)=\sqrt[3]{x+5} \\ (0,-5) \\ f^(-1)(x)=\sqrt[3]{-5+5} \\ f^(-1)(x)=0 \end{gathered}
\begin{gathered} f^(-1)(x)=\sqrt[3]{(x+5)} \\ (-2,-13) \\ f^(-1)(x)=\sqrt[3]{-13+5} \\ f^(-1)(x)=\sqrt[3]{-8}=-\sqrt[3]{8}=-2 \end{gathered}

Hence, having seen that when we substitute y for x from the points from f(x), we get x for y from f(x), the inverse is correct.

Show how to find the inverse of f(x)=x^3-5. Calculate 3 points on f(x) and use these-example-1
User Bijoy
by
4.2k points