157k views
1 vote
Show how to find the inverse of f(x)=x^3-5. Calculate 3 points on f(x) and use these points to show that the inverse is correct

User Vrbilgi
by
8.7k points

1 Answer

3 votes

Step 1

Given;


f(x)=x^3-5

Required; To find the inverse of f(x)

Step 2

Find the inverse


\begin{gathered} let\text{ y=f\lparen x\rparen} \\ y=x^3-5 \\ replace\text{ y with x and x with y} \\ x=y^3-5 \end{gathered}

Then solve for y


\begin{gathered} x=y^3-5 \\ y^3=x+5 \\ Take\text{ cube root of both sides} \\ \sqrt[3]{y^3}=\sqrt[3]{x+5} \\ y=\sqrt[3]{x+5} \end{gathered}

Hence,


f^(-1)(x)=\sqrt[3]{x+5}

Step 3

Choose 3 points on f(x) and use these points to show that the inverse is correct.

The 3 points are;


(2,3),\text{ \lparen0,-5\rparen, \lparen-2,-13\rparen}
\begin{gathered} f^(-1)(x)=\sqrt[3]{x+5} \\ (2,3),\text{ where for inverse x=3, y=2} \\ f^(-1)(x)=\sqrt[3]{3+5} \\ f^(-1)(x)=2 \end{gathered}
\begin{gathered} f^(-1)(x)=\sqrt[3]{x+5} \\ (0,-5) \\ f^(-1)(x)=\sqrt[3]{-5+5} \\ f^(-1)(x)=0 \end{gathered}
\begin{gathered} f^(-1)(x)=\sqrt[3]{(x+5)} \\ (-2,-13) \\ f^(-1)(x)=\sqrt[3]{-13+5} \\ f^(-1)(x)=\sqrt[3]{-8}=-\sqrt[3]{8}=-2 \end{gathered}

Hence, having seen that when we substitute y for x from the points from f(x), we get x for y from f(x), the inverse is correct.

Show how to find the inverse of f(x)=x^3-5. Calculate 3 points on f(x) and use these-example-1
User Bijoy
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories