182k views
5 votes
The landscaper pours 200 gallons of herbicide in a pond. The herbicide degrades 11% each week.Write an equation to find the amount of herbicide in any given week.How much will be in the pond after 2 weeks?The landscaper will put another dose in the pond when the herbicide level drops below 50 gallons. In about how many weeks will he need to add more herbicide?

User Ivan Xiao
by
4.1k points

1 Answer

1 vote

To answer this question, we will use the following general form of an exponential model:


T=P(1\pm r)^t,

where P is the initial amount, r is the rate in decimal form, and t is the time.

In this case, since the herbicide degrades, the sign inside the parenthesis will be a minus sign, P=200, r=0.11, and t will be the time in weeks, therefore the number of gallons after t weeks can be modeled by the following equation:


T=200(1-0.11)^t.

Evaluating the above equation at t=2, we get:

(Answer part 1)


T=200(1-0.11)^2=158.42.

If we set T=50, and solve for t, we get:

(Answer part 2)


\begin{gathered} 50=200(1-0.11)^t, \\ (50)/(200)=(0.89)^t, \\ (1)/(4)=0.89^t, \\ \ln ((1)/(4))=t\ln 0.89, \\ t=(\ln ((1)/(4)))/(\ln 0.89)\approx12. \end{gathered}

Answer:

There will be 158 gallons after 2 weeks.

In about 12 weeks the landscaper has to put another dose.

User Andreas Hausladen
by
3.9k points