Answer:
Step-by-step explanation:Given:
Table having x and y values
To find:
If the table is a linear one and model the equation if it
For a table to be linear, the change in x values will be constant and the change in y values will also be constant.
change in x:
-5-(-9) = -5 +9 = 4
-1-(-5) = -1 + 5 = 4
change in y:
-7 - (-2) = -7+2 = -5
-17 - (-12) = -17 + 12 = -5
The change in x and change in y have a constant value.
Hence, the relationship is linear
From the option, the equation is written in point-slope form, so we will use the point-slope formula to get our equation
![\begin{gathered} Point\text{ slope:} \\ $$y-y_1=m(x-x_1)$$ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jiakhv3zxh2mqygcw7kqn4xmuxtjzgix9t.png)
To get the slope, we will pick any two points on the table. Using points (-9, -2) and (-5, -7)
![\begin{gathered} slope\text{ = }m\text{ = }(y_2-y_1)/(x_2-x_1) \\ m\text{ = }(-7-(-2))/(-5-(-9)) \\ m\text{ = }(-7+2)/(-5+9)\text{ = }(-5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/acwvzxpxwdhniuj1ie4a5abudyhazi8u07.png)
![\begin{gathered} $$y-y_1=m(x-x_1)$$ \\ using\text{ point \lparen-9, -2\rparen: }x_1\text{ = -9, y}_1\text{ = -2} \\ \\ y\text{ - \lparen-2\rparen = }(-5)/(4)(x\text{ - \lparen-9\rparen\rparen} \\ \\ y\text{ + 2 = }(-5)/(4)(x\text{ + 9\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v1p32tn2qnxgdmcg66gu3wanmdgs1zx7y7.png)
![The\text{ relationship is linear; }y\text{ + 2 = }(-5)/(4)(x\text{ + 9\rparen \lparen last option\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/e7943mkke8hsr5csziiosjboh6j950sxjd.png)