ANSWER
x = 2 ± 4i
Step-by-step explanation
We can find the solutions of the equation,

Using the quadratic formula,
![\begin{gathered} ax^2+bx+c=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uuterq6bz1kwr2mb9jy58c523r5v4v644y.png)
In this equation, a = 1, b = -4 and c = 20,
![x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4\cdot1\cdot20}}{2\cdot1}=\frac{4\pm\sqrt[]{16-80}}{2}=\frac{4\pm\sqrt[]{-64}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/kzctxtp4unc1cyl1pcr17w922q8ow7kjr0.png)
Since the value under the radical is negative, there are two complex solutions. Replace the negative sign with i² and solve,
![x=\frac{4\pm\sqrt[]{i^2\cdot64}}{2}=(4\pm8i)/(2)=2\pm4i](https://img.qammunity.org/2023/formulas/mathematics/college/3qftvoqewjmgataluku74k573rhclv0tjn.png)
Hence, the complex solutions are 2 ± 4i