139k views
0 votes
Compare: 0.06 x 10-1 O 10-2A>B)

Compare: 0.06 x 10-1 O 10-2A>B)-example-1
User Finuka
by
8.4k points

1 Answer

4 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given question.


0.06*10^(-1)O\text{ }0.6*10^(-2)

STEP 2: Divide the expression into two parts and solve each parts to get their results


\begin{gathered} 0.06*10^(-1)\Rightarrow\text{?} \\ 0.6*10^(-2)\Rightarrow\text{?} \end{gathered}

STEP 3: Solve the first expression


\begin{gathered} 0.06*10^(-1) \\ 0.06*10^(-1) \\ =0.06*(1)/(10) \\ \mathrm{Multiply\: fractions}\colon\quad \: a*(b)/(c)=(a\:*\:b)/(c) \\ =(1*\:0.06)/(10) \\ \mathrm{Multiply\: the\: numbers\colon}\: 1*\: 0.06=0.06 \\ =(0.06)/(10) \\ \mathrm{Divide\: the\: numbers\colon}\: (0.06)/(10)=0.006 \\ =0.006 \end{gathered}

STEP 4: Solve the second expression


\begin{gathered} 0.6*10^(-2) \\ \mathrm{Apply\: exponent\: rule}\colon\quad \: a^(-b)=(1)/(a^b) \\ \mathrm{Multiply\: fractions}\colon\quad \: a*(b)/(c)=(a\:*\:b)/(c) \\ =(1*\:0.6)/(10^2) \\ \mathrm{Multiply\: the\: numbers\colon}\: 1*\: 0.6=0.6 \\ =(0.6)/(10^2) \\ 10^2=100 \\ =(0.6)/(100) \\ \mathrm{Divide\: the\: numbers\colon}\: (0.6)/(100)=0.006 \\ =0.006 \end{gathered}

STEP 5: Compare the two results from the simplified expressions


\begin{gathered} \text{0}.006\Rightarrow0.006 \\ It\text{ can be se}en\text{ that the expression on the right hand side is equal to the expression on the left hand side} \end{gathered}

Hence,


0.06*10^(-1)=\text{ }0.6*10^(-2)

Equal sign(=)

User Mitrakov Artem
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories