We will investigate the manipulation of arithmatic sequences expressed as general nth terms.
An arithmatic sequences are expressed as following:
![a_{1\text{ }},a_2,a_3,\ldots a_(n-1),a_n](https://img.qammunity.org/2023/formulas/mathematics/college/rv2v728lsl1m2abesc1k6griiowixn16m0.png)
Where,
![\begin{gathered} a_1\colon FirstTerm_{} \\ a_n\colon\text{ nth Term} \\ n\colon\text{ Term number} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i6ekrkni4bcwj32yz8hlckx3wt9akrgub6.png)
An arithmatic sequence is defined by two parameters:
![\begin{gathered} a_1\colon\text{ First Term} \\ d\colon\text{ common difference} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrjmdi4uihxu2fpj48xhfwgm3jcdz70ldu.png)
Where,
![d=a_n-a_(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/vmnlzexui4d8na47c1wn9b8q483qe6kbuv.png)
The general formulation of the nth term in a arithmatic sequence is as follows:
![a_n=a_1\text{ + ( n - 1 )}\cdot d](https://img.qammunity.org/2023/formulas/mathematics/college/91cx6lnumodom1zkfl9gju3ibdak0uqcwr.png)
We are given the following arithmatic sequence terms:
![a_3=11,a_(12)\text{ = }74](https://img.qammunity.org/2023/formulas/mathematics/college/mcnne1t8v2y7u0dgahuy3v80902pu6e6va.png)
We are to determine the common difference ( d ) for the above sequence. We will use the general formulation to construct equations:
![\begin{gathered} a_3=a_1\text{ + ( 3 - 1 )}\cdot d\text{ = }11 \\ a_(12)=a_1\text{ + ( 12 - 1 )}\cdot d\text{ = 74} \\ \\ a_1\text{ + 2}\cdot d\text{ = }11\ldots\text{ Eq1} \\ a_1\text{ +11}\cdot d\text{ = 74 }\ldots\text{ Eq2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uq89x696fmexctl1zsb1vz5rnbt6pwxaap.png)
We will solve the above two equations simultaneosuly:
![\begin{gathered} -a_1\text{ - 2}\cdot d\text{ = -}11 \\ a_1\text{ +11}\cdot d\text{ = 74 } \\ ========== \\ 9d\text{ = 63} \\ d\text{ = 7 }\ldots\text{ Answer} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xhm0bo3lui8adksvhspxyj6fb446zhncn6.png)
The common difference for the above sequence is:
![7](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ndslitjw1mgjy00cgc5ph80cjkygzgqq4.png)