Given the values shown in the table, let be "x" the Vehicle weight (in hundreds of lbs.) and "y" the City MPG (Miles per gallon).
1. Given the points:
![(27,25),(35,19),(39,16),(32,21),(40,15),(23,29),(18,31),(37,15),(17,46),(23,26),(37,17),(30,26),(23,29),(32,19),(20,33),(30,21)]()
You can plot them on a Coordinate Plane:
2. Notice the following line:
Notice that the points are closed to the red line that has a negative slope. Therefore, you can identify that when one of the variables increases, the other variable decreases. Hence, you can conclude that the data describes a negative correlation.
3. You need to follow these steps to find the equation of the line of best fit:
- You need to find the average of the x-values by adding them and dividing the Sum by the number of x-values:
![\bar{X}=(27+35+39+32+40+23+18+37+17+23+37+30+23+32+20+30)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/t9of2g8wrq633m4yrsuefuv12xyl4rizco.png)
![\bar{X}=28.9375](https://img.qammunity.org/2023/formulas/mathematics/college/nle4e1w3t69h6hfb3jdso749ncpn21lfju.png)
- Find the average of the y-values:
![\bar{Y}=(25+19+16+21+15+29+31+15+46+26+17+26+29+19+33+21)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/larnf8gegrm1zmah2g0huywl6s538awz9g.png)
![\bar{Y}=24.25](https://img.qammunity.org/2023/formulas/mathematics/college/x49ll82o23h3qic8x5gtoxv6kcap002dav.png)
- Find:
![\sum_(i=1)^n(x_i-\bar{X})](https://img.qammunity.org/2023/formulas/mathematics/college/8q5wya3wjlmegrie5kax1eenfnyf38rpe9.png)
Where this represents each x-values in the data set:
![x_i](https://img.qammunity.org/2023/formulas/mathematics/high-school/via3fj1z0c3g0b36bh7lxek1o2xom60c1s.png)
You get:
![\sum_(i=1)^n(x_i-\bar{X})=(27-28.9375)+(35-28.9375)+(39-28.9375)+(32-28.9375)+(40-28.9375)+(23-28.9375)+(18-28.9375)+(37-28.9375)+(17-28.9375)+(23-28.9375)+(37-28.9375)+(30-28.9375)+(23-28.9375)+(32-28.9375)+(20-28.9375)+(30-29.9375)](https://img.qammunity.org/2023/formulas/mathematics/college/xzchipt12oaffdcw4nvd33dpdm8d1xpuvb.png)
![\sum_(i=1)^n(x_i-\bar{X})=1.0625](https://img.qammunity.org/2023/formulas/mathematics/college/n873xi75hwiefq808ydf0i25aneohfzuor.png)
- Find:
![\sum_(i=1)^n(x_i-\bar{Y})](https://img.qammunity.org/2023/formulas/mathematics/college/265fgfmiiam13yb3f5vos0suvwxv5ttvdt.png)
You get:
![\sum_(i=1)^n(x_i-\bar{Y})=(25-24.25)+(19-24.25)+(16-24.25)+(21-24.25)+(15-24.25)+(29-24.25)+(31-24.25)+(15-24.25)+(46-24.25)+(26-24.25)+(17-24.25)+(26-24.25)+(29-24.25)+(19-24.25)+(33-24.25)+(21-24.25)](https://img.qammunity.org/2023/formulas/mathematics/college/xrbztnq871olvzf1491svpgia8y8j2rhz2.png)
![\sum_(i=1)^n(x_i-\bar{Y})=-3.25](https://img.qammunity.org/2023/formulas/mathematics/college/kfsvfgt3uvqu3lklcuc76m9fuwkfi6l58t.png)
- Find:
![\sum_(i=1)^n(x_i-\bar{X})(y_i-\bar{Y})](https://img.qammunity.org/2023/formulas/mathematics/college/w1wckd2cvdmwypnsod1bqhzlnwbe5gkf9z.png)
You get:
![=-857.75](https://img.qammunity.org/2023/formulas/mathematics/college/gay4laf4tkpv7dxl5s9b0sq2heru5xd2fs.png)
- Find:
![\sum_(i=1)^n(x_i-\bar{X})^2](https://img.qammunity.org/2023/formulas/mathematics/college/rekym6wr0ybougjdhsetx5rxklsboj5fbe.png)
You can find it by squaring each Difference of the x-values and the Mean. you get:
![=862.9375](https://img.qammunity.org/2023/formulas/mathematics/college/ravepbu8r5toeeppuuf6f9iflw44xu63t7.png)
- Find the slope of the line
![m=(-857.75)/(862.9375)\approx-0.994](https://img.qammunity.org/2023/formulas/mathematics/college/qhhjncjfu7rbhtuwmrbahkwb7h8sdh29wo.png)
- Find the y-intercept with this formula:
![b=\bar{Y}-m\bar{X}](https://img.qammunity.org/2023/formulas/mathematics/college/2frjtmk5tmrwcrzepi9mbj7qc2cijz7xsf.png)
![b=24.25-(-0.994)(1.0625)](https://img.qammunity.org/2023/formulas/mathematics/college/3e65bvoyxk5575h1eqsvx2qiw50qiyhoh2.png)
![b=53.0135](https://img.qammunity.org/2023/formulas/mathematics/college/al1zhyphqgyqychgeyztt696um17hupz06.png)
Therefore, the line in Slope-Intercept Form:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
is the following:
![y=-0.9940x+53.0135](https://img.qammunity.org/2023/formulas/mathematics/college/q45b938b15752f5eq8ymzkp9jhw476p4lz.png)
4. If:
![y=30](https://img.qammunity.org/2023/formulas/mathematics/high-school/u6abdzjo2q5o3o7e6fmsscvdyae5aynn5r.png)
You can predict the vehicle weight by substituting that value into the equation found in Part 3, and solving for "x":
![30=-0.9940x+53.0135](https://img.qammunity.org/2023/formulas/mathematics/college/c2tl3ec7rkhtsgvviiuc40c4h20osanfkf.png)
![(30-53.0135)/(-0.9949)=x](https://img.qammunity.org/2023/formulas/mathematics/college/b8fvf2q7y636o6xbq18apcfv61nxtet249.png)
![x\approx23.1524](https://img.qammunity.org/2023/formulas/mathematics/college/f5dcc77nugm19hd1ndzkzwha26tox8we2w.png)
5. If a vehicle weighs 1500 pounds, then:
![x=1500](https://img.qammunity.org/2023/formulas/mathematics/college/ytlh77ounyd2vmc04h3gbq9aiklzo6reun.png)
Then you can determine the expected city MPG of the vehicle by substituting this value into the equation and evaluating:
![y=-0.9940(1500)+53.0135](https://img.qammunity.org/2023/formulas/mathematics/college/sckq4y4h7pfwt9x0s7dnjp698cekjhlggb.png)
![y\approx-1437.9865](https://img.qammunity.org/2023/formulas/mathematics/college/llnfn174fl379il3yo0tfvx1ciwknbec97.png)
Hence, the answers are:
1.
2. It describes a negative correlation.
3.
![y=-0.9940x+53.0135](https://img.qammunity.org/2023/formulas/mathematics/college/q45b938b15752f5eq8ymzkp9jhw476p4lz.png)
4.
![x\approx23.1524\text{ \lparen in hundreds of pounds\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/wmqkzigdn5jzbfchdfbl8r10uvmt40zvza.png)
5.
![y\approx-1437.9865\text{ \lparen In miles per gallon\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/71xr60qztnzbfbcf6599clc1vpdn12x0qu.png)