EXPLANATION
Given the following operation:
3/4 - 1/2*7/8
First, let's solve 1/2*7/8:
Multiply fractions: a/b* c/d = (a*c)/(b*d)
![=(1\cdot7)/(2\cdot8)](https://img.qammunity.org/2023/formulas/mathematics/college/f1xauxn0vopu847u655k6y9znza09xoefy.png)
Multiply the numbers: 1*7 = 7
![=(7)/(2\cdot8)](https://img.qammunity.org/2023/formulas/mathematics/college/sdbqra7gcnnfb2wlbgec77rhe4trqt1tij.png)
Multiply the numbers 2*8=16
![=(3)/(4)-(7)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/wcb04sgiskxxf0tucsumsi17r7b8aq4wgj.png)
Now, we need the Least Common Multiplier of 4, 16:
The LCM of a, b is the samllest positive number that is divisible by both a and b:
Prime factorization of 4:
4 divides by 2 ---> 4= 2*2
2 is a primer number, therefore no further factorization is possible.
Prime factorization of 16:
Multiply each factor the greatest number of times it occurs in either 4 or 16
= 2*2*2*2
Multiply the numbers: 2*2*2*2 = 16
Adjust fractions based on LCM
For 3/4: multiply the denominator and numerator by 4
![(3)/(4)=(3\cdot4)/(3\cdot4)=(12)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/cctk1iirjwy9l8tc2bvosrrihf8avvb8ys.png)
![=(12)/(16)-(7)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/wovmsw6xo3sdcbl9km6yosp1jke6jh8wg1.png)
Since the denominators are equal, combine the fractions:
![=(12-7)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/ljumbhlswg28disxcngq3121juvs83rbjv.png)
Subtract the numbers: 12-7 = 5
![=(5)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/6tggr4b5bf2xkymaecb7dbh2hhac5ww76s.png)