Answer:
500,000cm²
Explanations:
The formula for calculating the perimeter of the fence is expressed as:
![P=2(l+w)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bvd374ri4qq5bmjfcc1yqnnxj8a3xi5dx.png)
where:
• L is the ,length, of the fencing
,
• W is the ,width ,of the fencing
If Farmer Ed does not fence the side along the river, the perimeter of the river will become;
![\begin{gathered} P=l+2w \\ 2000=l+2w \\ l=2000-2w \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tx3e9h0qvzraj01xnykgz65lkoudt1qzfd.png)
The area of the rectangular plot will be expressed as:
![A=lw](https://img.qammunity.org/2023/formulas/mathematics/college/1uev9eqrb6cie54zfnubw0e3j6pmkw3cu2.png)
Substitute the expression for the length into the area to have:
![\begin{gathered} A=w(2000-2w) \\ A=2000w-2w^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgs8l1zcwfwmaoilw0749wpoxs0r3knwei.png)
If the area of the plot is maximized, then dA/dw = 0. Taking the derivative will give:
![\begin{gathered} (dA)/(dw)=0 \\ 2000-4w=0 \\ 4w=2000 \\ w=(2000)/(4) \\ w=500m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2ue9gik41nlcn54exrlivsss8mw5cx7px9.png)
Calculate the length of the plot. Recall that:
![\begin{gathered} l=2000-2w \\ l=2000-2(500) \\ l=2000-1000 \\ l=1000m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ngv7fi8liy8u4qbwxt9d3l7h0vngjtqv2y.png)
Determine the largest area that can be enclosed
![\begin{gathered} A=lw \\ A=500m*1000m \\ A=500,000m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y6zth80akkb5vwujpm155wxtpec9onhb8g.png)
Hence the largest area that can be enclosed is 500,000cm²