We are given the following information
f(-1) = 16 and f(5) = -8
Which means that
![(x_1,y_1)=(-1,16)\text{and}(x_2,y_2)=(5,-8)](https://img.qammunity.org/2023/formulas/mathematics/college/jy9gc5yconwhsx1u7o8i48invpvaa90d9p.png)
a. Find the distance between these points
Recall that the distance formula is given by
![d=\sqrt[]{\mleft({x_2-x_1}\mright)^2+\mleft({y_2-y_1}\mright)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/wk0274bc8to4x64qfz58fb6i4btzelzdis.png)
Let us substitute the given points into the above distance formula
![\begin{gathered} d=\sqrt[]{({5_{}-(-1)})^2+({-8_{}-16_{}})^2} \\ d=\sqrt[]{({5_{}+1})^2+({-24_{}})^2} \\ d=\sqrt[]{({6})^2+({-24_{}})^2} \\ d=\sqrt[]{36^{}+576^{}} \\ d=\sqrt[]{612} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jbdwy8w6i72r0duk05h4trrvxwiemfeqsp.png)
Therefore, the distance between these points is √612 = 24.738
b. Find the midpoint between these points
Recall that the midpoint formula is given by
![(x_m,y_m)=((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/suejtpwrh6gnagrnonc4ih2ixrxa4e1u93.png)
Let us substitute the given points into the above midpoint formula
![\begin{gathered} (x_m,y_m)=(\frac{-1_{}+5_{}}{2},\frac{16_{}+(-8)_{}}{2}) \\ (x_m,y_m)=(\frac{-1_{}+5}{2},\frac{16_{}-8}{2}) \\ (x_m,y_m)=((4)/(2),(8)/(2)) \\ (x_m,y_m)=(2,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8fvpgbzq657e47q2eajlt3m7u302yu1jil.png)
Therefore, the midpoint of these points is (2, 4)
c. Find the slope between these points
Recall that the slope is given by
![m=(y_2−y_1)/( x_2−x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/o91vd3tblqwe697an5j3njq2uev1474xhr.png)
Let us substitute the given points into the above slope formula
![m=(-8-16)/(5-(-1))=(-24)/(5+1)=(-24)/(6)=-4](https://img.qammunity.org/2023/formulas/mathematics/college/iqxjhuwmjncovkb24qjhv7krviksmaqjum.png)
Therefore, the slope of these points is -4.