Given:
3x - 5y = 18
To graph this line, rewrite the equation in slope-intercept form:
y = mx + b
Where m is the slope and b is the y-intercept.
Subtract 3x from both sides:
3x - 3x - 5y = -3x + 18
-5y = -3x + 18
Divide all terms by -5:
![\begin{gathered} (-5y)/(-5)=(-3x)/(-5)+(18)/(-5) \\ \\ y=(3)/(5)x-(18)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/im6y9b4s7r8jy9zgry8tkog2vddqomctnv.png)
Thus, the slope intercept form of the equation is:
![y=(3)/(5)x-(18)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/s2avgtdzp925erxnua78bvvfjsja02k0mk.png)
Any line can be graphed using two or more points.
Let's determine two points on the line.
Input 6 for x and solve for y:
![\begin{gathered} y=(3)/(5)\ast6-(18)/(5) \\ \\ y=(18)/(5)-(18)/(5) \\ \\ y=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10qhur25bzf6t0kfwvko64vcdacpfuxka3.png)
Also, the y-intercept is:
![(0,-(18)/(5))](https://img.qammunity.org/2023/formulas/mathematics/college/mx9nsarc8swng70y7fdhf5qfmilr5ftnrh.png)
convert the fraction to decimal:
![-(18)/(5)=-3.6](https://img.qammunity.org/2023/formulas/mathematics/college/uoznwu9exnqvtdu724vritisl4owe5jkre.png)
Thus, we have the points:
![\begin{gathered} (0,-3.6) \\ (6,\text{ 0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dylibdr7m81v7901eq6vpj8267qb7qnx7z.png)
x y
0 -3.6
6 0
Mark the points on a graph and make a straight line that passes through the points.
The graph is attached below: