Given that the population can be represented by the equation;
![P(t)=(2t^2+75)/(2t^2+150)](https://img.qammunity.org/2023/formulas/mathematics/college/tefcqr3838i0gpz2j8edj7kiki4fnmg79x.png)
The current population (Initial population) is the population at time t=0;
Substituting;
![t=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjl3uyxgb078iujqg67x1b4lz4s6l3i8vf.png)
![\begin{gathered} P(0)=(2t^2+75)/(2t^2+150)=(2(0)^2+75)/(2(0)^2+150)=(75)/(150) \\ P(0)=0.5\text{ million} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ph585awcek4zpjb9a1civuxc640mypst8m.png)
Therefore, the current population of the habitat is;
![0.5\text{ million}](https://img.qammunity.org/2023/formulas/mathematics/college/zh0w7gy2hmdvmt03372vkl2ekjq4ijiz88.png)
The long term population would be the population as t tends to infinity;
![\begin{gathered} \lim _(t\to\infty)P(t)=(2t^2+75)/(2t^2+150)=(2(\infty)^2+75)/(2(\infty)^2+150)=(\infty)/(\infty) \\ \lim _(t\to\infty)P(t)=(4t)/(4t)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9xc9eq3mdc86obwm4haya2094kzcptjnw.png)
Therefore, the long term population of the habitat is;
![P(\infty)=1\text{ million}](https://img.qammunity.org/2023/formulas/mathematics/college/b19zxnizn9cq6je9qgiohjulnrb29lyaq1.png)